日韩视频在线精品视频免费观看-日韩视频在线观看中字-日韩视频在线观看一区-日韩视频在线观看免费-日韩视频在线观看-日韩视频在线播放

產品分類

當前位置: 首頁 > 工業控制產品 > 運動控制 > 直流電動機

類型分類:
科普知識
數據分類:
直流電動機

Motor Calculations

發布日期:2022-04-26 點擊率:78

  • Calculating Mechanical Power Requirements

  • Torque - Speed Curves

  • Numerical Calculation

  • Sample Calculation

  • Thermal Calculations

Calculating Mechanical Power Requirements

In dc motors, electrical power (Pel) is converted to mechanical power (Pmech). In addition to frictional losses, there are power losses in Joules/sec (Iron losses in coreless dc motors are negligible).

Pel = Pmech + Pj loss

Physically, power is defined as the rate of doing work. For linear motion, power is the product of force multiplied by the distance per unit time. In the case of rotational motion, the analogous calculation for power is the product of torque multiplied by the rotational distance per unit time.

Prot = M x ω

Where:

Prot = rotational mechanical power
M = torque
ω = angular velocity

The most commonly used unit for angular velocity is rev/min (RPM). In calculating rotational power, it is necessary to convert the velocity to units of rad/sec. This is accomplished by simply multiplying the velocity in RPM by the constant (2 x ∏) /60:

ωrad = ωrpm x (2∏)/60

It is important to consider the units involved when making the power calculation. A reference that provides conversion tables is very helpful for this purpose. Such a reference is used to convert the torque-speed product to units of power (Watts). Conversion factors for commonly used torque and speed units are given in the following table. These factors include the conversion from RPM to rad/sec where applicable.

Torque UnitsUnits SpeedConversion Factor
oz-inRPM0.00074
oz-inrad/sec0.0071
in-lbRPM0.0118
in-lbrad/sec0.1130
ft-lbRPM0.1420
ft-lbrad/sec1.3558
N-mRPM0.1047

For example, assume that it is necessary to determine the power required to drive a torque load of 3 oz-in at a speed of 500 RPM. The product of the torque, speed, and the appropriate conversion factor from the table is:

3oz-in x 500rpm x 0.00074 = 1.11 Watts

Calculation of power requirements is often used as a preliminary step in motor or gearmotor selection. If the mechanical power required for a given application is known, then the maximum or continuous power ratings for various motors can be examined to determine which motors are possible candidates for use in the application.

Torque - Speed Curves

One commonly used method of displaying motor characteristics graphically is the use of torque – speed curves. While the use of torque - speed curves is much more common in technical literature for larger DC machines than it is for small, ironless core devices, the technique is applicable in either case. Torque – speed curves are generated by plotting motor speed, armature current, mechanical output power, and efficiency as functions of the motor torque. The following discussion will describe the construction of a set of torque – speed curves for a typical DC motor from a series of raw data measurements. Motor 1624009S is used as an example.

Assume that we have a small motor that we know has a nominal voltage of 9 volts. With a few fundamental pieces of laboratory equipment, the torque - speed curves for the motor can be generated:

Step One (measure basic parameters):

Using a voltage supply set to 9 volts, run the motor unloaded and measure the rotational speed using a non-contacting tachometer (strobe, for instance). Measure the motor current under this no-load condition. A current probe is ideal for this measurement since it does not add resistance in series with the operating motor. Using an adjustable torque load such as a small particle brake coupled to the motor shaft, increase the torque load to the motor just to the point where stall occurs. At stall, measure the torque from the brake and the motor current. For the sake of this discussion, assume that the coupling adds no load to the motor and that the load from the brake does not include unknown frictional components. It is also useful at this point to measure the terminal resistance of the motor. Measure the resistance by contacting the motor terminals. Then spin the motor shaft and take another measurement. The measurements should be very close in value. Continue to spin the shaft and take at least three measurements. This will ensure that the measurements were not taken at a point of minimum contact on the commutator.

Now we have measured the:

  • n0= no-load speed

  • I0= no-load current

  • MH= stall torque

  • R= terminal resistance

Step Two (plot current vs. torque and speed vs torque):

Prepare a graph with motor torque on the horizontal axis, motor speed on the left vertical axis, and motor current on the right vertical axis. Scale the axes based on the measurements in step 1. Draw a straight line from the left origin of the graph (zero torque and zero current) to the stall current on the right vertical axis (stall torque and stall current). This line represents a plot of the motor current as a function of the motor torque. The slope of this line is the proportionality constant for the relationship between motor current and motor torque (in units of current per unit torque). The reciprocal of this slope is the torque constant of the motor (in units of torque per unit current). For the resulting curves see Graph 1.

For the purpose of this discussion, it will be assumed that the motor has no internal friction. In practice, the motor friction torque is determined using the torque constant of the motor and the measured no-load current. The torque vs speed line and the torque vs current line are then started not at the left vertical axis but at an offset on the horizontal axis equal to the calculated friction torque.

Step Three (plot power vs torque and efficiency vs torque):

In most cases, two additional vertical axes are added for plotting power and efficiency as functions of torque. A second left vertical axis is usually used for efficiency and a second right vertical axis is used for power. For the sake of simplifying this discussion, efficiency vs. torque and power vs. torque will be plotted on a second graph separate from the speed vs. torque and current vs. torque plots.

Construct a table of the motor mechanical power at various points from no-load to stall torque. Since mechanical power output is simply the product of torque and speed with a correction factor for units (see section on calculating mechanical power requirements), power can be calculated using the previously plotted line for speed vs. torque. A sample table of calculations for motor M2232U12G is shown in Table 1. Each calculated point is then plotted. The resulting curve is a parabolic curve as shown in Graph 1. The maximum mechanical power occurs at approximately one-half of the stall torque. The speed at this point is approximately one-half of the no-load speed.

Construct a table of the motor efficiency at various points from no-load to stall torque. The voltage applied to the motor is given, and the current at various levels of torque has been plotted. The product of the motor current and the applied voltage is the power input to the motor. At each point selected for calculation, the efficiency of the motor is the mechanical power output divided by the electrical power input. once again, a sample table for motor M2232U12G is shown in Table 1. and a sample curve in Graph 1. Maximum efficiency occurs at about 10% of the motor stall torque.

Table 1
TorqueSpeedCurrentPowerEfficiency
(oz-in)(rpm)(mA)(Watts)(%)
0.02511,247.650.0240.2080.10
0.0510,786.30.0480.39971.87
0.07510,324.850.0720.57375.27
0.19,863.60.0960.73074.99
0.1259,402.250.1200.87073.25
0.158,940.90.1440.99270.78
0.1758,479.550.1681.09867.89
0.28,018.20.1921.18764.73
0.2257,556.850.2171.25861.40
0.257,095.50.2411.31357.95
0.2756,634.150.2651.35054.41
0.36,172.80.2891.37050.80
0.3255,711.450.3131.37447.14
0.3255,711.450.3371.36043.44
0.355,250.10.3371.36043.44
0.3754,788.750.3611.32939.71
0.44,327.40.3851.28135.95
0.4253,866.050.4091.21632.17
0.453,404.70.4331.13428.37
0.4752,943.350.4571.03524.56
0.52,4820.4810.91820.74
0.5252020.650.5050.78516.90
0.551,559.30.5290.63513.05
0.5751,097.950.5770.2835.34
0.6636.60.5770.2835.34
0.625175.250.6020.0811.47

Graph 1

Numerical Calculation
For an iron-less core, DC motor of relatively small size, the relationships that govern the behavior of the motor in various circumstances can be derived from physical laws and characteristics of the motors themselves. Kirchoff's voltage rule states, "The sum of the potential increases in a circuit loop must equal the sum of the potential decreases." When applied to a DC motor connected in series with a DC power source, Kirchoff's voltage rule can be expressed as "The nominal supply voltage from the power source must be equal in magnitude to the sum of the voltage drop across the resistance of the armature windings and the back EMF generated by the
motor.":

V0 = (I x R) + Ve

Where:

Vo = Power supply (Volts)
I = Current (A)
R = Terminal Resistance (Ohms)
Ve = Back EMF (Volts)

The back EMF generated by the motor is directly proportional to the angular velocity of the motor. The proportionality constant is the back EMF constant of the motor.

Ve = ω x Ke

Where:

ω= angular velocity of the motor
ke = back EMF constant of the motor

Therefore, by substitution:

Vo = (I x R) + (ω x Ke)

The back EMF constant of the motor is usually specified by the motor manufacturer in volts/RPM or mV/RPM. In order to arrive at a meaningful value for the back EMF, it is necessary to specify the motor velocity in units compatible with the specified back EMF constant. The motor constant is a function of the coil design and the strength and direction of the flux lines in the air gap. Although it can be shown that the three motor constants normally specified (back EMF constant, torque constant, and velocity constant) are equal if the proper units are used, calculation is facilitated by the specification of three constants in the commonly accepted units.

The torque produced by the rotor is directly proportional to the current in the armature windings. The proportionality constant is the torque constant of the motor.

Mo = I x Km

Where:
Mo = torque developed at rotor
kM = motor torque constant

Substituting this relationship:

V = (M x R)/Km +(ω x Ke)

The torque developed at the rotor is equal to the friction torque of the motor plus the resisting torque due to external mechanical loading:

M0 = Ml + Mf

Where:
Mf = motor friction torque
Ml = load torque

Assuming that a constant voltage is applied to the motor terminals, the motor velocity will be directly proportional to sum of the friction torque and the load torque. The constant of proportionality is the slope of the torque-speed curve and can be calculated by:

Δn/ΔM = n0 / MH

Where:
MH = stall torque
n0= no-load speed

An alternative approach to deriving this value is to solve for velocity, n:

n = (V0/Ke) - M/(kM x Ke)

Differentiating both sides with respect to M yields:

Δn/ΔM = -R / (kM x Ke)

Using dimensional analysis to check units, the result is:

-Ohms/(oz-in/A) x (V/RPM) = -Ohm-A-RPM/V-oz-in = -RPM/oz-in

It is a negative value describing loss of velocity as a function of increased torsional load.

Sample Calculation

Motor 1624T009S is to be operated with 9 volts applied to the motor terminals. The torque load is 0.2 oz-in. Find the resulting motor speed, motor current, efficiency, and mechanical power output. From the motor data sheet, it can be seen that the no-load speed of the motor at 12 volts is 11,700 rpm. If the torque load is not coupled to the motor shaft, the motor would run at this speed.

The motor speed under load is simply the no-load speed less the reduction in speed due to the load. The proportionality constant for the relationship between motor speed and motor torque is the slope of the torque vs. speed curve, given by the motor no-load speed divided by the stall torque. In this example, the speed reduction caused by the 0.2 oz -in torque load is:

0.2 oz-in x (11,700 rpm/.634 oz-in) = -3,690 rpm

The motor speed under load must then be:

11,700 rpm - 3,690 rpm = 8,010 rpm

The motor current under load is the sum of the no-load current and the current resulting from the load. The proportionality constant relating current to torque load is the torque constant (kM), in this case, 1.039 oz -in/A. In this case, the load torque is 0.2 oz-in, and the current resulting from the load must be:

I = 0.2 oz-in x 1 amp/1.039 oz -in = 192 mA

The total motor current must be the sum of this value and the motor no-load current. The data sheet lists the motor no-load current as 60 mA. Therefore, the total current is:

192 mA + 12 mA = 204 mA

The mechanical power output of the motor is simply the product of the motor speed and the torque load with a correction factor for units (if required). Therefore, the mechanical power output of the motor in this application is:

output power = 0.2 oz-in x 8,010 rpm x 0.00074 = 1.18 Watts

The mechanical power input to the motor is the product of the applied voltage and the total motor current in Amps. In this application:

input power = 9 volts x 0.203 A = 1.82Watts

Since efficiency is simply power out divided by power in, the efficiency in this application is:

efficiency = 1.18 Watts / 1.82 Watts = 0.65 = 65%

Thermal Calculations

A current I flowing through a resistance R results in a power loss as heat of I2R. In the case of a DC motor, the product of the square of the total motor current and the armature resistance is the power loss as heat in the armature windings. For example, if the total motor current was .203 A and the armature resistance 14.5 Ohms the power lost as heat in the windings is:

power loss = 0.2032 x 14.5 = 0.59 Watts

The heat resulting from I2R losses in the coil is dissipated by conduction through motor components and airflow in the air gap. The ease with which this heat can be dissipated is a function of the motor type and construction. Motor manufacturers typically provide an indication of the motor’s ability to dissipate heat by providing thermal resistance values. Thermal resistance is a measure of the resistance to the passage of heat through a given thermal path. A large cross section aluminum plate would have a very low thermal resistance, for example, while the values for air or a vacuum would be considerably higher. In the case of DC motors, there is a thermal path from the motor windings to the motor case and a second between the motor case and the motor environment (ambient air, etc.). Some motor manufacturers specify a thermal resistance for each of the two thermal paths while others specify only the sum of the two as the total thermal resistance of the motor. Thermal resistance values are specified in temperature increase per unit power loss. The total I2R losses in the coil (the heat source) are multiplied by thermal resistances to determine the steady state armature temperature. The steady state temperature increase of the motor (T) is given by:

Tinc = I2R x (Rth1 + Rth2)

Where:

Tinc = temperature increase
I = current through motor windings
R = resistance of motor windings
Rh1 = thermal resistance from windings to case
Rh2 = thermal resistance case to ambient

For example, a 1624E009S motor running with a current of 0.203 Amps in the motor windings, with an armature resistance of 14.5 Ohms, a winding-to-case thermal resistance of 8 °C/Watt, and a case-to-ambient thermal resistance of 39 °C/Watt. The temperature increase of the windings is given by:

T = .2032 x 14.5 x (8 + 39) = 28°C

If it is assumed that the ambient air temperature is 22°C, then the final temperature of the motor windings is 50°C (22° + 28°).

It is important to be certain that the final temperature of the windings does not exceed their rated value. In the example given above, the maximum permissible winding temperature is 100°C. Since the calculated winding temperature is only 50°C, thermal damage to the motor windings will not be a problem in this application. One could use similar calculations to answer a different kind of question. For example, an application may require that a motor run at its maximum torque without being damaged by heating. To continue with the example given above, suppose it is desired to run motor 1624E009S at the maximum possible torque with an ambient air temperature of 22°C. The designer wants to know how much torque the motor can safely provide without overheating. 

The data sheet for motor 1624E009S specifies a maximum winding temperature of 100°C. Since the ambient temperature is 22°C, a rotor temperature increase of 78°C is tolerable. The total thermal resistance for the motor is 47°C/Watt. By taking the reciprocal of the thermal resistance and multiplying this value by the acceptable temperature increase, the maximum power dissipation in the motor can be calculated:

P = 78° x 1 Watt/47° = 1.66 Watts

Setting I2R equal to the maximum power dissipation and solving for I yields the maximum continuous current allowable in the motor windings:

I2 = 2.19 Watts / 14.15 ohms
I2R = 2.19 Watts
I = .338 Amps

The motor has a torque constant of 1.86 oz-in/A and a no-load current of 60 mA. Therefore, the maximum current available to produce useful torque is .530 Amps (.590 - .060), and the maximum usable torque available (M) is given by:

M = .327 A x 1.309 oz-in/A = 0.428 oz-in

The maximum allowable current through the motor windings could be increased by decreasing the thermal resistance of the motor. The rotor-to-case thermal resistance is primarily fixed by the motor design. The case-to-ambient thermal resistance can be decreased significantly by the addition of heat sinks. Motor thermal resistances for small DC motors are usually specified with the motor suspended in free air. Therefore, there is usually some heat sinking which results from simply mounting the motor into a framework or chassis. Some manufacturers of larger DC motors specify thermal resistance with the motor mounted into a metal plate of known dimensions and material.

The preceding discussion does not take into account the change in resistance of the copper windings as a result of heating. While this change in resistance is important for larger machines, it is usually not significant for small motors and is often ignored for the sake of calculation.

下一篇: PLC、DCS、FCS三大控

上一篇: 索爾維全系列Solef?PV

推薦產品

更多
主站蜘蛛池模板: 日韩高清专区 | 成人av自拍| 欧美日比视频 | 国产深夜福利在线 | 久久综合精品国产二区无码 | 香蕉在线看 | 夜夜噜噜噜 | 国产精品一久久香蕉国产线看观看 | 午夜av一区二区三区 | 欧美四虎 | 中文在线最新版天堂 | 91精品国产成人www | 狠狠操很很干 | 黄色一级欧美 | 国产内射合集颜射 | 亚洲色欲色欲www在线播放 | 久久久精品国产99久久精品麻追 | 绯色av中文字幕一区三区 | 人妻 偷拍 无码 中文字幕 | 国产三级在线免费观看 | 亚洲风情亚aⅴ在线发布 | 国产原创av在线 | 久久久久久久久国产 | 影音先锋国产 | 91丨porny丨国产 | www.日本在线视频 | 强奷人妻日本中文字幕 | avtt在线播放 | 国产猛男猛女超爽免费视频 | 91黄色免费视频 | 我要看免费毛片 | 91麻豆精品国产自产在线观看一区 | 免费人妻无码不卡中文字幕系 | 自拍偷拍在线视频 | 91精品国产日韩91久久久久久360 | 91精产国品产区 | 中文字幕乱码在线观看 | 粉嫩绯色av一区二区在线观看 | 92看片淫黄大片一级 | 久久精品国产曰本波多野结衣 | 裸体性做爰免费视频网站 | 91一区二区三区久久久久国产乱 | 绿帽刺激高潮对白 | 国产高清视频 | 少妇太爽了在线观看 | 国内自拍区 | 超碰九七在线 | 亚洲天堂网址 | 国产日韩欧美在线 | 亚洲天堂8 | 日日干夜夜草 | 久久ク成人精品中文字幕 | 99爱在线视频这里只有精品 | 成年人免费小视频 | 色哟哟—国产精品 | 日韩在线国产精品 | 久久国产视频一区 | 250pp亚洲情艺中心欧美 | 韩国无码色视频在线观看 | 欧美大片免费观看在线观看网站推荐 | 亚洲欧美天堂 | 亚洲国产精品麻豆 | 日韩精品一区二区三区四区 | 亚洲精品国产成人 | 在线播放免费人成毛片乱码 | 新疆少妇xxxx做受 | 找av123导航| 国产高清成人 | av在线观看地址 | 乱短篇艳辣500篇h文最新章节 | 天堂аⅴ在线最新版在线 | 狠狠色噜噜狠狠狠狠色综合久av | 国产精品h片在线播放 | 伊人久久一区 | 日韩一区精品视频一区二区 | 国产偷人妻精品一区二区在线 | 欧美日韩久久久精品a片 | 黄色一大片| 日本大香伊一区二区三区 | 欧美理伦少妇2做爰 | 91在线播| 日本午夜网站 | 97欧美| 久久久久久久久99精品情浪 | 欧美亚洲综合另类色妞网 | 亚洲第一成人在线 | 久久国产免费 | 欧美日韩1区 | 国产日韩在线一区 | 日本xxxxx九色视频在线观看 | 精品成人在线 | 日本少妇aaa | 亚洲欧美一区二区三区国产精品 | 色视频国产 | 中文字幕一区日韩精品 | 国产suv精品一区二人妻 | 亚洲日韩中文字幕一区 | 免费又色又爽又黄的成人用品 | 精品久久久久久无码国产 | 亚洲国产成人精品无码区在线观看 | 免费无码的av片在线观看 | xxxxxxxx黄色片| 午夜婷婷国产麻豆精品 | 国产精品99爱免费视频 | 欧美午夜视频 | 国产精品久久久久久白浆 | 久久99一区 | 国产福利一区在线 | 久久6精品| 欧美激情综合色综合啪啪五月 | 色就是欧美 | 原创露脸88av| 国产剧情久久久 | 午夜在线网址 | 中文av一区二区 | 亚洲综合成人网 | 亚洲地区天堂网 | 99视频免费看 | 中文字幕日日夜夜 | 草草影院ccyycom | 久久伊人精品一区二区三区 | 日韩精品高清在线 | 免费h片在线观看 | 欧美成年黄网站色视频 | www91视频com | 新sss欧美整片在线播放 | 国产精品大全 | 国产精品一区二区羞羞答答 | 精品97国产免费人成视频 | 欧美大胸大乳人奶波霸 | 9l视频自拍九色9l视频九色 | 久久久五月 | 欧美黄色www | 国产福利午夜 | 亚洲一区在线免费 | 久久久久久不卡 | 色综合激情网 | 另类αv欧美另类aⅴ | 99视频在线 | 亚洲图片欧美激情 | 色中色成人导航 | 亚洲综合国产成人丁香五月激情 | aaa大片十八岁禁止 aa爱做片免费 | 亚洲欧洲日产国码av老年人 | 精品无码国产一区二区三区51安 | 亚洲一区二区av在线观看 | 久激情内射婷内射蜜桃 | 成人性生交大片免费看中文 | 日本特黄一级 | 1024国产精品 | 成人久久18免费 | 中文字幕久久精品 | 露脸叫床粗话东北少妇 | 能免费看黄色的网站 | av免费网址在线观看 | 手机在线观看毛片 | 福利免费视频 | 精久国产av一区二区三区孕妇 | 国产情侣久久久久aⅴ免费 精国产品一区二区三区a片 | 久久精品国产网红主播 | 国产私密视频 | 日日夜夜狠狠爱 | 国产sm主人调教女m视频 | 日韩视频一区二区 | 成熟女人牲交片免费观看视频 | 国产一区二区三区成人欧美日韩在线观看 | 国产精品久久久久久久久借妻 | 精品国产免费久久久久久尖叫 | 131mm少妇做爰视频 | 思思99热| 成人羞羞国产免费图片 | 欧美日批 | 337p日本欧洲亚洲大胆精蜜臀 | 中文字幕亚洲色妞精品天堂 | 欧美人与禽猛交狂配 | 国产麻豆精品精东影业av网站 | mm131丰满少妇人体欣赏图 | www成人在线视频 | 欧洲精品视频在线观看 | 婷婷爱五月 | 国产原创剧情av | 欧美xxxxx高潮喷水麻豆 | 一区二区三区国产在线观看 | 免费特级黄毛片 | 国产人妻久久精品二区三区老狼 | 亚洲第一毛片 | 久久久久久久久久久久中文字幕 | 成人免费区一区二区三区 | 精品99在线 | 国精产品一区二区三区黑人免费看 | 无码人妻aⅴ一区二区三区 美女扒开大腿让男人桶 | 丰满妇女强制高潮18xxxx | 亚洲欧美v国产一区二区 | 六月婷婷av | 天天做天天爱夜夜爽少妇 | 亚洲精品乱码久久久久久日本 | 91精品国产高清91久久久久久 | www嫩草| 日日av拍夜夜添久久免费 | 免费污视频在线观看 | 永久免费精品视频 | 熟女俱乐部五十路六十路 | 亚洲色av天天天天天天 | 亚洲中文字幕在线无码一区二区 | 天天插天天色 | 美女艹逼视频 | 国产哺乳奶水91在线播放 | 亚洲成年轻人电影网站www | 女人黄色特级大片 | 中文字幕一区二区不卡 | 国产精品嫩草影院av蜜臀 | 全部孕妇毛片 | 丁香婷婷激情国产高清秒播 | 国模精品一区二区三区 | 超碰97人人人人人蜜桃 | 蜜色视频| 久久99精品久久久久久 | ww国产内射精品后入国产 | 狠狠色综合网站久久久久久久高清 | 欧美性插动态图 | 午夜精品一区二区三区在线视频 | xxxxxl19成人免费视频 | 青青成人网 | 国产精品久久久久久av免费看 | 日韩在线免费av | 九九九热精品免费视频观看网站 | 精品精品欲天堂导航 | 天天摸久久精品av | 国产中文字幕在线免费观看 | 精品无码一区二区三区爱欲 | 内射中出无码护士在线 | 久热中文字幕无码视频 | 天天干妹子| 国产三级欧美三级日产三级99 | 欧美成人ⅴideosxxxxx | 无码高潮少妇毛多水多水 | 国产午夜大地久久 | 人人添人人澡人人澡人人人人 | 98在线视频 | 欧美美女啪啪 | 亚洲成熟少妇视频在线观看 | 久久国产精品99久久久久 | 国产亚洲精品精品精品 | 大j8福利视频导航 | xx视频在线观看 | 欧美成人三区 | 亚洲综合一区二区三区葵つかさ | 影音先锋中文字幕在线播放 | 日本公妇乱淫免费 | 欧美牲交a欧美牲交aⅴ免费下载 | 黄色av网站免费 | 色人阁av| av黄色在线播放 | 亚洲va欧美va人人爽春色影视 | 少妇午夜性影院私人影院软件 | 日韩久久综合 | 欧美精品久久96人妻无码 | 中文字幕有码无码人妻av蜜桃 | 亚洲精品传媒 | 久久久亚洲综合 | av无码免费永久在线观看 | 国产黄色免费观看 | 狠狠躁日日躁夜夜躁2022麻豆 | 欧美瑟瑟 | 91精品在线免费 | 九七视频在线 | 性欧美大战久久久久久久 | 深夜在线观看 | 国产欧美日韩综合精品一区二区 | 亚洲国产精品高潮呻吟久久 | 哈利波特3在线观看免费版英文版 | 性欧美又大又长又硬 | 国产污在线观看 | 国内成人在线 | 亚洲成人久久久久 | 久草在线视频免费资源观看 | 人人爽久久涩噜噜噜小说 | 欧美一性一乱一交一视频 | 999亚洲国产精 | 亚洲品牌自拍一品区9 | 久久免费公开视频 | 国产精品99久久久久久白浆小说 | 无码人妻丰满熟妇区bbbbxxxx | 日韩一区二区三区精品视频 | 免费的黄色片 | 欧美亚洲综合另类 | 日本一区二区三区免费视频 | 国产传媒一级片 | 免费一区二区 | a资源在线 | 女女同性女同一区二区三区91 | 亚洲精品久久久狠狠爱小说 | 欧美激情999 | 欧洲黄色毛片 | 亚洲成av人片在线播放无码 | 丰满岳乱妇在线观看视频国产 | av片观看| 色噜噜亚洲精品中文字幕 | 国产线播放免费人成视频播放 | 少妇性饥渴无码a区免费 | 丁香婷婷激情国产高清秒播 | 欧美精品欧美极品欧美激情 | 欧洲亚洲一区二区三区四区五区 | 高清中文字幕 | 最近中文字幕在线视频 | 99re6在线视频精品免费下载 | 国产免费看av | 午夜精品视频一区二区三区在线看 | 成人无码精品一区二区三区 | 男人扒开女人双腿猛进视频 | 欧美极品jizzhd欧美仙踪林 | 天堂一二三区 | 午夜dv内射一区区 | 永久免费观看美女裸体的网站 | 91精品久久久久久久久青青 | 国产小视频自拍 | 日韩高清不卡在线 | 国产午夜精品一区二区 | 亚洲一二三区在线 | 伊人久久大香线蕉无码 | 成人aaa| 久久网站视频 | 日韩午夜高清 | 久久综合资源 | 日本熟妇乱子伦xxxx | 欧美三级日本 | 99久久99久久精品免费看蜜桃 | 欧美视频一区二区在线观看 | 欧美日韩精品一区二区 | 91成人在线免费观看 | 国产精品欧美福利久久 | 丰满岳乱妇一区二区三区 | 夜夜夜网 | 欧美日韩资源 | 国产精品片一区二区三区 | 狼人久草 | 小雪好紧好滑好湿好爽视频 | 国产亚洲欧美日韩亚洲中文色 | 毛片毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 6699久久久久久久77777'7 6699嫩草久久久精品影院竹菊 | 成人影片麻豆国产影片免费观看 | 成人免费短视频 | 中文字幕在线观看一区 | 韩日激情视频 | 欧美日韩精品一区二区三区不卡 | 中文字幕日韩人妻不卡一区 | 啪啪精品 | 亚洲第一毛片 | 在线看片人成视频免费无遮挡 | zzijzzij亚洲成熟少妇 | 青娱乐国产视频 | 精品在线一区二区三区 | 看免费黄色大片 | 成人国产精品入口 | 免费成人高清在线视频 | 水果派av解说在线观看 | 精品人人妻人人澡人人爽人人 | 性猛交xxxx免费看网站 | 国产 字幕 制服 中文 在线 | 人人妻人人妻人人片av | 精品欧美色视频网站在线观看 | 中文字幕人妻熟女人妻洋洋 | 亚洲精品短视频 | 国产精品久久久久久久久久99 | 美国黄色一级视频 | 五月天婷婷影院 | 成人性生交大片免费看r链接 | 荡女乱翁床第高h | 91青青草 | 澳门免费av | 五月激情片 | 青春草在线视频观看 | 国产亚洲成av人片在线观看桃 | 自拍偷拍亚洲 | 综合色在线观看 | 久久亚洲私人国产精品va | 97人伦色伦成人免费视频 | 久久精品成人欧美大片 | 91麻豆精品国产91久久久更新时间 | 中文理论片 | 最近中文字幕2019在线一区 | 国产一二在线 | 国产精品一区二区久久国产 | 国内精品伊人久久久久网站 | 黄色网址你懂的 | 色综合天天综合网国产成人网 | 九色蝌蚪9l视频蝌蚪9l视频开放 | 国产精品v日韩精品v在线观看 | 尤物一区二区 | 中文毛片无遮挡高潮免费 | 国产精品a无线 | 日本极品少妇xxxx | 日本人与黑人做爰视频网站 | 亚洲aⅴ天上人间在线观看 亚洲aⅴ在线 | 一本一道久久a久久精品蜜桃 | 久久综合se | 欧美伦理一区 | 性中国videossexo另类 | 久久久久国产精品 | 放荡的美妇在线播放 | 国产精品成人网站 | 亚洲丁香色| 日韩亚洲欧美一区二区 | 又黄又爽又色的免费网站 | 成人av在线一区二区 | 91偷拍富婆spa盗摄在线 | 精品乱码久久久久久中文字幕 | 日韩一卡2卡3卡4卡2021免费观看国色天香 | 青娱乐极品视觉盛宴av | 国产女人18毛片水真多 | 久久爱99| 日韩一区二区三区在线视频 | 免费一级毛片在线观看 | 日韩第一区 | 亚洲欧洲精品一区二区三区 | 亚洲天堂男人的天堂 | 国产区在线 | 欧美精品v国产精品v日韩精品 | 欧美一区二区三区激情视频 | 亚洲欧美国产精品久久久久久久 | 亚洲va国产va天堂va久久 | 免费黄网站在线观看 | 九九热色 | 国产成人自拍网 | 丝袜捆绑调教午夜一区二区 | 色午夜一av男人的天堂 | 91夜夜澡人人爽人人喊欧美 | 顶级欧美熟妇xx | 国内精品卡一卡二卡三 | 亚洲乱码日产精品bd在线观看 | bt7086福利一区国产 | 国产综合网站 | 成人精品视频一区二区 | 乌克兰极品少妇xxxx做受小说 | 久久精品中文字幕一区 | 伊人久久大香网 | 狠狠躁18三区二区一区 | 91在线免费播放 | 亚洲一区二区三区无码中文字幕 | 又爽又色禁片1000视频免费看 | 欧美日韩在线免费视频 | 永久黄网站色视频免费观看w | 欧美精品福利视频 | 欧美乱大交做爰xxxⅹ小说 | 黑人狂躁日本妞videos在哪里 | 久久精品中文字幕免费 | 性做久久久久久免费观看欧美 | 亚洲一区二区在线免费 | 伊人春色网 | 一区二区三区无码高清视频 | 影音先锋国产在线 | 久久av一区二区三区亚洲 | 黄色a级片视频 | 无遮挡做爰激吻国产999 | 在线观看日韩中文字幕 | 日日夜夜欧美 | 三级黄色免费网站 | 久久婷婷五月综合色一区二区 | 欧美精品一区二区在线播放 | 国产精品日日夜夜 | 午夜无码免费福利视频网址 | 99国产精品入口 | 最新久久久| 丝袜黄色片| 欧美精品中文字幕亚洲专区 | 国产91对白在线播放丿 | 国产乱码av| 操操操干干干 | 国产精品午夜一区 | 成人第一页 | 中文字幕在线播出 | 在线视频 一区二区 | 国产黄色录相 | 超碰在线超碰 | 日本a级c片免费看三区 | 看av免费 | 91灌醉下药在线观看播放 | 91天天色| 黄色大片免费观看 | 国产伦精品一区二区 | 国产乱理伦片在线观看 | 激情久久网 | 最新国产精品视频 | 免费看小12萝裸体视频国产 | 一区二区三区网 | 在线观看黄 | 在线观看视频一区 | 97超碰色 | 欧美模特做爰xxxⅹxxx | 欧美激情一区二区三区在线 | 欧美色淫| 亚洲高清毛片一区二区 | 国产精品二区视频 | 日产精品一区二区三区在线观看 | 激情在线观看视频 | 国产精自产拍久久久久久蜜小说 | 国产一区二区三区网站 | 欧美激情久久久久久 | 国产精品久久久久桃色tv | www.91成人| www色综合 | 日日艹夜夜艹 | av日韩国产 | 国产中文字幕91 | 亚洲嫩草影院 | 免费吸乳羞羞网站视频 | 国产精品黑色丝袜久久 | 国产精品成人在线 | 91精品国产亚一区二区三区老牛 | 免费看日韩毛片 | 免费男人下部进女人下部视频 | 做爰xxxⅹ高潮69网站 | 91欧美成人 | 日韩人妻无码中文字幕视频 | 韩国19禁无遮挡啪啪无码网站 | www国产亚洲精品久久麻豆 | 国产福利第一页 | 成人综合影院 | 国产亚洲人成网站在线观看 | 色诱亚洲精品久久久久久 | 国产成人精品三级麻豆 | 熟女体下毛毛黑森林 | 草草影院ccyy国产日本第一页 | 亚欧av在线播放 | 国产l精品国产亚洲区在线观看 | 波多野吉衣一区二区三区 | 亚洲人成人网 | 日日干夜夜操 | 苍井优三级在线观看 | 91丨porny丨九色 | 久久久久蜜桃精品成人片 | 久久精品欧美日韩精品 | 亚洲综合日韩 | 国产第三区| 狠狠色综合一区二区 | 91porny首页入口 | 国产在线观看中文字幕 | 无码av一区二区三区无码 | 亚洲第一女人av | 日躁夜躁狠狠躁2001 | 国产综合久久 | www.成人精品| 日本一级少妇免费视频乌克兰裸体 | 97视频在线看 | 日本xxxxxxxxx8泡妞 | 99精品国产综合久久久久久 | 九色视频在线播放 | 日本少妇videos高潮 | 97一区二区国产好的精华液 | 久草综合视频 | 日韩精品久久久免费观看夜色 | 视频一区二区国产 | 国产精品久久久久久久 | 天天躁日日躁狠狠躁视频2021 | 日韩av在线播放观看 | 免费 成 人 黄 色 网 | 欧美日韩一区免费 | 国产色妇 | 国产免费a | 日本激情吻胸吃奶呻吟视频 | 久久激情网站 | 国产伦a视频 | av影片在线观看 | 麻豆回家视频区一区二 | jizz亚洲女人高潮大叫 | 久久成熟 | 色与欲影视天天看综合网 | 国产精品久久免费观看spa | 欧美一区 | 精品视频久久久久久 | 自拍亚洲一区欧美另类 | 香港三级精品三级在线专区 | 一级特级毛片 | av男人的天堂在线观看国产 | 中文字幕一精品亚洲无线一区 | 日韩视频在线观看一区二区三区 | 国产精品无码一区二区在线看 | 精品国产系列 | 91精品国产精品 | 日韩欧美国产中文字幕 | 色屁屁www | 国产精品无码一区二区桃花视频 | 国产学生美女无遮拦高潮视频 | 色妞色视频一区二区三区四区 | 亚洲一区二区视频在线观看 | 国产精品久久久久久人妻精品动漫 | 成人女同av免费观看 | 美日韩三级 | 久久精品欧美日韩精品 | 性囗交免费视频观看 | 深夜福利影院 | 欧洲在线观看 | 日本韩国欧美一区二区三区 | 日韩亚洲欧美在线观看 | 国产乱a视频在线 | 婷婷狠狠久久久一本精品 | 日日婷婷夜日日天干 | 久草在线观看资源 | 亚洲一区二区三区四区五区六区 | 亚洲另类伦春色综合妖色成人网 | 国产福利在线观看 | 中国女人和老外的毛片 | 久久加勒比亚洲精品一区 | 内射爽无广熟女亚洲 | 国产成人一区二区啪在线观看 | 亚洲熟色妇av日韩熟色妇在线 | 狠狠色噜噜狠狠狠狠色综合久 | 77777五月色婷婷丁香视频在线 | 日本中文字幕在线 | √天堂中文www官网在线 | 少妇性xxxx性开放黄色 | 日韩区在线 | 男阳茎进女阳道视频大全 | 日韩一级片免费 | 自拍偷拍第1页 |